Haptic Holography: A Primitive Computational Plastic
نویسندگان
چکیده
We describe our work on haptic holography, a combination of computational modeling and multimodal spatial display, which allows a person to see, feel, and interact with three-dimensional freestanding holographic images of material surfaces. In this paper, we combine various holographic displays with a force-feedback device to render multimodal images with programmatically prescribed material properties and behavior. After a brief overview of related work which situates visual display within the manual workspace, we describe our holo-haptic approach and survey three implementations, Touch, Lathe, and Poke, each named for the primitive functional affordance it offers. In Touch, static holographic images of simple geometric scenes are reconstructed in front of the hologram plane, and coregistered with a force model of the same geometry. These images can be visually inspected and haptically explored using a handheld interface. In Lathe, a holo-haptic image can be reshaped by haptic interaction in a dynamic but constrained manner. Finally in Poke, using a new technique for updating interference-modeled holographic fringe patterns, we render a holo-haptic image that permits more flexible interactive reshaping of its reconstructed surface. We situate this work within the context of related research and describe the strengths, shortcomings, and implications of our approach.
منابع مشابه
Ghostfinger: a novel platform for fully computational fingertip controllers
We present Ghostfinger, a technology for highly dynamic up/down fingertip haptics and control. The overall user experience offered by the technology can be described as that of tangibly and audibly interacting with a small hologram. More specifically, Ghostfinger implements automatic visualization of the dynamic instantiation/parametrization of algorithmic primitives that together determine the...
متن کاملComputer Haptics : Rendering Techniques for Force - Feedback in Virtual Environments
Haptic virtual environments (VEs) are computer-generated environments within which human users can touch, feel, and manipulate virtual objects in real time through force or tactile feedback. Integration of force-feedback into VEs with graphical and auditory displays is expected to have many applications in the area of medical training, CAD/CAM, entertainment, graphic arts, and education. The de...
متن کاملEvidence for the existence of localized plastic flow au-to-waves generated in deforming metals
The localized plastic flow auto-waves observed for the stages of easy glide and linear work hardening in a number of metals are considered. The propagation rates were determined experimentally for the auto-waves in question with the aid of focused-image holography. The dispersion relation of quadratic form derived for localized plastic flow auto-waves and the dependencies of phase and group rat...
متن کاملA virtual training simulator for learning cataract surgery with phacoemulsification
This paper presents the development of a low-cost cataract surgery simulator for trainees to practise phacoemulsification procedures with computer-generated models in virtual environments. It focuses on the training of cornea incision, capsulorrhexis and phaco-sculpting, which are simulated interactively with computationally efficient algorithms developed for tissue deformation, surface cutting...
متن کاملQuantitative assessment of the effectiveness of using display techniques with a haptic device for manipulating 3D objects in virtual environments
Quantitative assessment is made of using two display techniques, providing two different levels of depth perception, in conjunction with a haptic device for manipulating 3D objects in virtual environments. The two display techniques are 2D display, and interactive 3D stereoscopic virtual holography display on a zSpace tablet. Experiments were conducted, by several users of different ages and co...
متن کامل